Creates a list with all of the comparisons needed to create Bayesian and maximum-likelihood estimates for proportion of niche similarities.
Usage
create_comparisons(data, comparison = c("within", "among"))
Examples
# ---- load siber ----
library(SIBER)
# ---- create community names data frame ----
# uncomment to use
# str(demo.siber.data.2)
demo.siber.data.2$group_name <- as.factor(demo.siber.data.2$group)
demo.siber.data.2$group <- as.numeric(demo.siber.data.2$group_name) |>
as.character()
demo.siber.data.2$community_names <- as.factor(demo.siber.data.2$community)
demo.siber.data.2$community <- as.numeric(demo.siber.data.2$community_names) |>
as.character()
cg_names <- demo.siber.data.2 |>
dplyr::distinct(community, group, community_names, group_name)
# ---- create comparsions ----
create_comparisons(cg_names,
comparison = "within")
#> $`1.1_1.2`
#> # A tibble: 1 × 2
#> cg_1 cg_2
#> <chr> <chr>
#> 1 1.1 1.2
#>
#> $`1.1_1.3`
#> # A tibble: 1 × 2
#> cg_1 cg_2
#> <chr> <chr>
#> 1 1.1 1.3
#>
#> $`1.2_1.3`
#> # A tibble: 1 × 2
#> cg_1 cg_2
#> <chr> <chr>
#> 1 1.2 1.3
#>
#> $`2.1_2.4`
#> # A tibble: 1 × 2
#> cg_1 cg_2
#> <chr> <chr>
#> 1 2.1 2.4
#>