Extract Bayesian estimates for the following six layman metrics, \(\delta^{13}\)C range, \(\delta^{15}\)N range, total area (TA), distance to centroid (CD), distance to the nearest neighbour (NND), and the standard deviation of the distance to the nearest neighbour (SDNND) from data objects created by SIBER. To learn more about the following metrics please review Layman et al. (2008).
Usage
extract_layman(
data,
type = NULL,
community_df = NULL,
data_format = NULL,
isotope_x = NULL,
isotope_y = NULL,
element_x = NULL,
element_y = NULL
)Arguments
- data
a
listcreated by the functionbayesianLayman()from the package SIBER.- type
a
characterthat is either"bay"or"ml"which indicates whether the community metrics to be extracted are from a Bayesian analysis or a maximum-likelihood.- community_df
a two column data frame. One of the columns has to be named
communityand the data in the column will benumericsas acharacterstring(e.g.,"1", "2", "3"). This is the order of the community names and will be used to join the actual community names to the correct data. These are the same class and values required by the function,createSiberObject()from SIBER. The second column contains the actual names of the communities that the user is working with (e.g.,"region").- data_format
a
characterstring that decides whether the returned object is in long or wide format. Default is"long", with the alternative supplied being"wide".- isotope_x
a
numericthat will be used in the labeling processes for the range of the x. Default is13(e.g., \(\delta\)^13 C). This will create a column calledlabels, that will only be created whendata_formatis set tolong.- isotope_y
a
numericthat will be used in the labeling processes for the range of the y isotope. Default is15(e.g., \(\delta\)^15 N). #' This will create a column calledlabels, that will only be created whendata_formatis set tolong.- element_x
a
characterthat will be used in the labeling process for the range of the x isotope. Default isC(e.g., \(\delta\)^13 C). This will create a column calledlabels, that will only be created whendata_formatis set tolong.- element_y
a
characterthat will be used in the labeling process for the range of the y isotope. Default isN(e.g., \(\delta\)^13 N). #' This will create a column calledlabels, that will only be created whendata_formatis set tolong.
Value
A tibble containing four rows when data_format is set to its
default which is long. These four rows are the following, community,
the_name_of_the_communities, metric and post_est.
Examples
library(SIBER)
# ---- bring in SIBER demo data ----
# uncomenet to use
# str(demo.siber.data)
# ---- create community names data frame ----
# uncomment to use
# str(demo.siber.data.2)
demo.siber.data.2$group_name <- as.factor(demo.siber.data.2$group)
demo.siber.data.2$group <- as.numeric(demo.siber.data.2$group_name) |>
as.character()
demo.siber.data.2$community_names <- as.factor(demo.siber.data.2$community)
demo.siber.data.2$community <- as.numeric(demo.siber.data.2$community_names) |>
as.character()
c_names <- demo.siber.data.2 |>
dplyr::distinct(community, community_names)
demo.siber.data_2 <- demo.siber.data.2[,1:4]
# ---- create the siber object ----
siber.example <- createSiberObject(demo.siber.data_2)
# ---- view Bayesian estimates of mu and sigma produced by SIBER ---
# uncomment to use
# str(post_sam_siber)
# ---- extract posterior estimates of mu -----
mu_post <- extractPosteriorMeans(siber.example, post_sam_siber)
# ---- Bayesian estimates of layman metrics using SIBER ----
layman_b <- bayesianLayman(mu.post = mu_post)
# ---- use nichetools to extract Bayesian estimates of Layman metrics ----
layman_be <- extract_layman(layman_b, community_df = c_names)
layman_be
#> # A tibble: 48,000 × 5
#> community community_names metric post_est labels
#> <chr> <fct> <chr> <dbl> <fct>
#> 1 1 dublin dY_range 6.71 δ<sup>15</sup>N<br>Range
#> 2 1 dublin dX_range 8.14 δ<sup>13</sup>C<br>Range
#> 3 1 dublin TA 13.7 Total Area
#> 4 1 dublin CD 4.27 Distance to<br>Centroid
#> 5 1 dublin NND 5.08 Nearest<br>Neighbor<br>Distance
#> 6 1 dublin SDNND 3.57 SD Nearest<br>Neighbor<br>Distan…
#> 7 1 dublin dY_range 6.20 δ<sup>15</sup>N<br>Range
#> 8 1 dublin dX_range 8.19 δ<sup>13</sup>C<br>Range
#> 9 1 dublin TA 10.6 Total Area
#> 10 1 dublin CD 4.19 Distance to<br>Centroid
#> # ℹ 47,990 more rows