
Adjust Bayesian priors - One Source Trophic Position
Source:R/one_source_priors_params.R
one_source_priors_params.Rd
Adjust priors for one source trophic position model derived from Post 2002.
Usage
one_source_priors_params(
n1 = NULL,
n1_sigma = NULL,
dn = NULL,
dn_sigma = NULL,
tp_lb = NULL,
tp_ub = NULL,
sigma_lb = NULL,
sigma_ub = NULL,
bp = FALSE
)
Arguments
- n1
mean (\(\mu\)) prior for the mean \(\delta^{15}\)N baseline. Defaults to
9
.- n1_sigma
variance (\(\sigma\)) for the mean \(\delta^{15}\)N baseline. Defaults to
1
.- dn
mean (\(\mu\)) prior value for \(\Delta\)N. Defaults to
3.4
.- dn_sigma
variance (\(\sigma\)) for \(\delta^{15}\)N. Defaults to
0.25
.- tp_lb
lower bound prior for trophic position. Defaults to
2
.- tp_ub
upper bound prior for trophic position. Defaults to
10
.- sigma_lb
lower bound prior for \(\sigma\). Defaults to
0
.- sigma_ub
upper bound prior for \(\sigma\). Defaults to
10
.- bp
logical value that controls whether informed priors are supplied to the model for \(\delta^{15}\)N baseline. Default is
FALSE
meaning the model will use uninformed priors, however, the supplieddata.frame
needs values for \(\delta^{15}\)N baseline (n1
).
Details
$$\delta^{15}N = \delta^{15} N_1 + \delta N \times (tp - \lambda_1)$$
This function allows the user to adjust the priors for the following variables in the equation above:
The mean (
n1
; \(\mu\)) and variance (n1_sigma
; \(\sigma\)) for the mean \(\delta^{15}\)N for a given baseline (\(\delta^{15}N_1\)). This prior assumes a normal distribution.The mean (
dn
; \(\mu\)) and variance (dn_sigma
; \(\sigma\)) of \(\Delta\)N (i.e, trophic enrichment factor). This prior assumes a normal distribution.The lower (
tp_lb
) and upper (tp_ub
) bounds for trophic position. This prior assumes a uniform distribution.The lower (
sigma_lb
) and upper (sigma_ub
) bounds for variance (\(\sigma\)). This prior assumes a uniform distribution.
Examples
one_source_priors_params()
#> $dn
#> $dn$name
#> [1] "dn"
#>
#> $dn$sdata
#> [1] 3.4
#>
#> $dn$scode
#> [1] "real dn;"
#>
#> $dn$block
#> [1] "data"
#>
#> $dn$position
#> [1] "start"
#>
#> $dn$pll_args
#> [1] "data real dn"
#>
#>
#> $dn_sigma
#> $dn_sigma$name
#> [1] "dn_sigma"
#>
#> $dn_sigma$sdata
#> [1] 0.25
#>
#> $dn_sigma$scode
#> [1] "real dn_sigma;"
#>
#> $dn_sigma$block
#> [1] "data"
#>
#> $dn_sigma$position
#> [1] "start"
#>
#> $dn_sigma$pll_args
#> [1] "data real dn_sigma"
#>
#>
#> $tp_lb
#> $tp_lb$name
#> [1] "tp_lb"
#>
#> $tp_lb$sdata
#> [1] 2
#>
#> $tp_lb$scode
#> [1] "real tp_lb;"
#>
#> $tp_lb$block
#> [1] "data"
#>
#> $tp_lb$position
#> [1] "start"
#>
#> $tp_lb$pll_args
#> [1] "data real tp_lb"
#>
#>
#> $tp_ub
#> $tp_ub$name
#> [1] "tp_ub"
#>
#> $tp_ub$sdata
#> [1] 10
#>
#> $tp_ub$scode
#> [1] "real tp_ub;"
#>
#> $tp_ub$block
#> [1] "data"
#>
#> $tp_ub$position
#> [1] "start"
#>
#> $tp_ub$pll_args
#> [1] "data real tp_ub"
#>
#>
#> $sigma_lb
#> $sigma_lb$name
#> [1] "sigma_lb"
#>
#> $sigma_lb$sdata
#> [1] 0
#>
#> $sigma_lb$scode
#> [1] "real sigma_lb;"
#>
#> $sigma_lb$block
#> [1] "data"
#>
#> $sigma_lb$position
#> [1] "start"
#>
#> $sigma_lb$pll_args
#> [1] "data real sigma_lb"
#>
#>
#> $sigma_ub
#> $sigma_ub$name
#> [1] "sigma_ub"
#>
#> $sigma_ub$sdata
#> [1] 10
#>
#> $sigma_ub$scode
#> [1] "real sigma_ub;"
#>
#> $sigma_ub$block
#> [1] "data"
#>
#> $sigma_ub$position
#> [1] "start"
#>
#> $sigma_ub$pll_args
#> [1] "data real sigma_ub"
#>
#>
#> attr(,"class")
#> [1] "stanvars"