
Adjust Bayesian priors - Two Source Trophic Position
Source:R/two_source_priors_params.R
two_source_priors_params.Rd
Adjust priors for two source trophic position model derived from Post 2002.
Usage
two_source_priors_params(
a = NULL,
b = NULL,
c1 = NULL,
c1_sigma = NULL,
c2 = NULL,
c2_sigma = NULL,
n1 = NULL,
n1_sigma = NULL,
n2 = NULL,
n2_sigma = NULL,
dn = NULL,
dn_sigma = NULL,
tp_lb = NULL,
tp_ub = NULL,
sigma_lb = NULL,
sigma_ub = NULL,
bp = FALSE
)
Arguments
- a
(\(\alpha\)) exponent of the random variable for beta distribution. Defaults to
1
. See beta distribution for more information.- b
(\(\beta\)) shape parameter for beta distribution. Defaults to
1
. See beta distribution for more information.- c1
mean (\(\mu\)) prior for the mean of the first \(\delta^{13}\)C baseline. Defaults to
-21
.- c1_sigma
variance (\(\sigma\))for the mean of the first \(\delta^{13}\)C baseline. Defaults to
1
.- c2
mean (\(\mu\)) prior for or the mean of the second \(\delta^{13}\)C baseline. Defaults to
-26
.- c2_sigma
variance (\(\sigma\))for the mean of the first \(\delta^{13}\)C baseline. Defaults to
1
.- n1
mean (\(\mu\)) prior for the mean of the first \(\delta^{15}\)N baseline. Defaults to
8
.- n1_sigma
variance (\(\sigma\))for the mean of the first \(\delta^{15}\)N baseline. Defaults to
1
.- n2
mean (\(\mu\)) prior for or the mean of the second \(\delta^{15}\)N baseline. Defaults to
9.5
.- n2_sigma
variance (\(\sigma\)) for the mean of the second \(\delta^{15}\)N baseline. Defaults to
1
.- dn
mean (\(\mu\)) prior value for \(\Delta\)N. Defaults to
3.4
.- dn_sigma
variance (\(\sigma\)) for \(\delta^{15}\)N. Defaults to
0.5
.- tp_lb
lower bound for priors for trophic position. Defaults to
2
.- tp_ub
upper bound for priors for trophic position. Defaults to
10
.- sigma_lb
lower bound for priors for \(\sigma\). Defaults to
0
.- sigma_ub
upper bound for priors for \(\sigma\). Defaults to
10
.- bp
logical value that controls whether informed priors are supplied to the model for both \(\delta^{15}\)N and \(\delta^{15}\)C baselines. Default is
FALSE
meaning the model will use uninformed priors, however, the supplieddata.frame
needs values for both \(\delta^{15}\)N and \(\delta^{15}\)C baseline (c1
,c2
,n1
, andn2
).
Details
We will use the following equations from Post 2002:
$$\delta^{13}C_c = \alpha * (\delta ^{13}C_1 - \delta ^{13}C_2) + \delta ^{13}C_2$$
$$\delta^{15}N = \Delta N \times (tp - \lambda_1) + n_1 \times \alpha + n_2 \times (1 - \alpha)$$
$$\delta^{15}N = \Delta N \times (tp - (\lambda_1 \times \alpha + \lambda_2 \times (1 - \alpha))) + n_1 \times \alpha + n_2 \times (1 - \alpha)$$
The random exponent (\(\alpha\);
a
) and shape parameters (\(\beta\);b
) for \(\alpha\). This prior assumes a beta distribution.The mean (
c1
; \(\mu\)) and variance (c1_sigma
; \(\sigma\)) of the mean for the first \(\delta^{13}C\) for a given baseline. This prior assumes a normal distributions.The mean (
c2
;\(\mu\)) and variance (c2_sigma
; \(\sigma\)) of the mean for the second \(\delta^{13}C\) for a given baseline. This prior assumes a normal distributions.The mean (
n1
; \(\mu\)) and variance (n1_sigma
; \(\sigma\)) of the mean for the first \(\delta^{15}N\) for a given baseline. This prior assumes a normal distributions.The mean (
n2
;\(\mu\)) and variance (n2_sigma
; \(\sigma\)) of the mean for the second \(\delta^{15}\)N for a given baseline. This prior assumes a normal distributions.The mean (
dn
; \(\mu\)) and variance (dn_sigma
; \(\sigma\)) of \(\Delta\)N (i.e, trophic enrichment factor). This prior assumes a normal distributions.The lower (
tp_lb
) and upper (tp_ub
) bounds for priors for trophic position. This prior assumes a uniform distributions.The lower (
sigma_lb
) and upper (sigma_ub
) bounds for variance (\(\sigma\)). This prior assumes a uniform distributions.
Examples
two_source_priors_params()
#> $a
#> $a$name
#> [1] "a"
#>
#> $a$sdata
#> [1] 1
#>
#> $a$scode
#> [1] "real a;"
#>
#> $a$block
#> [1] "data"
#>
#> $a$position
#> [1] "start"
#>
#> $a$pll_args
#> [1] "data real a"
#>
#>
#> $b
#> $b$name
#> [1] "b"
#>
#> $b$sdata
#> [1] 1
#>
#> $b$scode
#> [1] "real b;"
#>
#> $b$block
#> [1] "data"
#>
#> $b$position
#> [1] "start"
#>
#> $b$pll_args
#> [1] "data real b"
#>
#>
#> $dn
#> $dn$name
#> [1] "dn"
#>
#> $dn$sdata
#> [1] 3.4
#>
#> $dn$scode
#> [1] "real dn;"
#>
#> $dn$block
#> [1] "data"
#>
#> $dn$position
#> [1] "start"
#>
#> $dn$pll_args
#> [1] "data real dn"
#>
#>
#> $dn_sigma
#> $dn_sigma$name
#> [1] "dn_sigma"
#>
#> $dn_sigma$sdata
#> [1] 0.5
#>
#> $dn_sigma$scode
#> [1] "real dn_sigma;"
#>
#> $dn_sigma$block
#> [1] "data"
#>
#> $dn_sigma$position
#> [1] "start"
#>
#> $dn_sigma$pll_args
#> [1] "data real dn_sigma"
#>
#>
#> $tp_lb
#> $tp_lb$name
#> [1] "tp_lb"
#>
#> $tp_lb$sdata
#> [1] 2
#>
#> $tp_lb$scode
#> [1] "real tp_lb;"
#>
#> $tp_lb$block
#> [1] "data"
#>
#> $tp_lb$position
#> [1] "start"
#>
#> $tp_lb$pll_args
#> [1] "data real tp_lb"
#>
#>
#> $tp_ub
#> $tp_ub$name
#> [1] "tp_ub"
#>
#> $tp_ub$sdata
#> [1] 10
#>
#> $tp_ub$scode
#> [1] "real tp_ub;"
#>
#> $tp_ub$block
#> [1] "data"
#>
#> $tp_ub$position
#> [1] "start"
#>
#> $tp_ub$pll_args
#> [1] "data real tp_ub"
#>
#>
#> $sigma_lb
#> $sigma_lb$name
#> [1] "sigma_lb"
#>
#> $sigma_lb$sdata
#> [1] 0
#>
#> $sigma_lb$scode
#> [1] "real sigma_lb;"
#>
#> $sigma_lb$block
#> [1] "data"
#>
#> $sigma_lb$position
#> [1] "start"
#>
#> $sigma_lb$pll_args
#> [1] "data real sigma_lb"
#>
#>
#> $sigma_ub
#> $sigma_ub$name
#> [1] "sigma_ub"
#>
#> $sigma_ub$sdata
#> [1] 10
#>
#> $sigma_ub$scode
#> [1] "real sigma_ub;"
#>
#> $sigma_ub$block
#> [1] "data"
#>
#> $sigma_ub$position
#> [1] "start"
#>
#> $sigma_ub$pll_args
#> [1] "data real sigma_ub"
#>
#>
#> attr(,"class")
#> [1] "stanvars"