
Adjust Bayesian priors - Two Source Trophic Position with \(\alpha_r\)
Source:R/two_source_priors_params_ar.R
two_source_priors_params_ar.Rd
Create priors for trophic position using a two source model with \(\alpha_r\) derived from Post 2002 and Heuvel et al. 2024.
Usage
two_source_priors_params_ar(
a = NULL,
b = NULL,
n1 = NULL,
n1_sigma = NULL,
n2 = NULL,
n2_sigma = NULL,
dn = NULL,
dn_sigma = NULL,
tp_lb = NULL,
tp_ub = NULL,
sigma_lb = NULL,
sigma_ub = NULL,
bp = FALSE
)
Arguments
- a
(\(\alpha\)) exponent of the random variable for beta distribution. Defaults to
1
. See beta distribution for more information.- b
(\(\beta\)) shape parameter for beta distribution. Defaults to
1
. See beta distribution for more information.- n1
mean (\(\mu\)) prior for first \(\delta^{15}\)N baseline. Defaults to
8.0
.- n1_sigma
variance (\(\sigma\))for first \(\delta^{15}\)N baseline. Defaults to
1
.- n2
mean (\(\mu\)) prior for second \(\delta^{15}\)N baseline. Defaults to
9.5
.- n2_sigma
variance (\(\sigma\)) for second \(\delta^{15}\)N baseline. Defaults to
1
.- dn
mean (\(\mu\)) prior value for \(\Delta\)N. Defaults to
3.4
.- dn_sigma
variance (\(\sigma\)) for \(\delta^{15}\)N. Defaults to
0.5
.- tp_lb
lower bound for priors for trophic position. Defaults to
2
.- tp_ub
upper bound for priors for trophic position. Defaults to
10
.- sigma_lb
lower bound for priors for \(\sigma\). Defaults to
0
.- sigma_ub
upper bound for priors for \(\sigma\). Defaults to
10
.- bp
logical value that controls whether informed baseline priors are supplied to the model for \(\delta^{15}\)N baselines. Default is
FALSE
meaning the model will use uninformed priors, however, the supplieddata.frame
needs values for both \(\delta^{15}\)N baseline (n1
andn2
)
Details
We will use the following equations derived from Post 2002 and Heuvel et al. 2024:
$$\alpha = (\delta^{13} C_c - \delta ^{13}C_2) / (\delta ^{13}C_1 - \delta ^{13}C_2)$$
$$\alpha = \alpha_r \times (\alpha_{max} - \alpha_{min}) + \alpha_{min}$$
$$\delta^{15}N = \Delta N \times (tp - \lambda_1) + n_1 \times \alpha_r + n_2 \times (1 - \alpha_r)$$
$$\delta^{15}N = \Delta N \times (tp - (\lambda_1 \times \alpha_r + \lambda_2 \times (1 - \alpha_r))) + n_1 \times \alpha_r + n_2 \times (1 - \alpha_r)$$
For equation 1)
This equation is a carbon source mixing model with
\(\delta^{13}C_c\) is the isotopic value for consumer,
\(\delta^{13}C_1\) is the mean isotopic value for baseline 1 and
\(\delta^{13}C_2\) is the mean isotopic value for baseline 2. This
equation is added to the data frame using add_alpha()
.
For equation 2)
\(\alpha\) is being corrected using equations in
Heuvel et al. 2024
with \(\alpha_r\) being the corrected value (bound by 0 and 1),
\(\alpha_{min}\) is the minimum \(\alpha\) value calculated
using add_alpha()
and \(\alpha_{max}\) being the maximum \(\alpha\)
value calculated using add_alpha()
.
For equation 3) and 4)
\(\delta^{15}\)N are values from the consumer,
\(n_1\) is \(\delta^{15}\)N values of baseline 1, \(n_2\) is
\(\delta^{15}\)N values of baseline 2,
\(\Delta\)N is the trophic discrimination factor for N (i.e., mean of 3.4
),
tp is trophic position, and \(\lambda_1\) and/or
\(\lambda_2\) are the trophic levels of
baselines which are often a primary consumer (e.g., 2
or 2.5
).
This function allows the user to adjust the priors for the following variables in the equation above:
The random exponent (\(\alpha\);
a
) and shape parameters (\(\beta\);b
) for \(\alpha_r\). This prior assumes a beta distribution.The mean (
n2
;\(\mu\)) and variance (n2_sigma
; \(\sigma\)) of the second \(\delta^{15}\)N for a given baseline. This prior assumes a normal distributions.The mean (
c1
;\(\mu\)) and variance (c1_sigma
; \(\sigma\)) of the second \(\delta^{13}\)C for a given baseline. This prior assumes a normal distributions.The mean (
c2
;\(\mu\)) and variance (c2_sigma
; \(\sigma\)) of the second \(\delta^{13}\)C for a given baseline. This prior assumes a normal distributions.The mean (
dn
; \(\mu\)) and variance (dn_sigma
; \(\sigma\)) of \(\Delta\)N (i.e, trophic enrichment factor). This prior assumes a normal distributions.The lower (
tp_lb
) and upper (tp_ub
) bounds for priors for trophic position. This prior assumes a uniform distributions.The lower (
sigma_lb
) and upper (sigma_ub
) bounds for variance (\(\sigma\)). This prior assumes a uniform distributions.
Examples
two_source_priors_params_ar()
#> $a
#> $a$name
#> [1] "a"
#>
#> $a$sdata
#> [1] 1
#>
#> $a$scode
#> [1] "real a;"
#>
#> $a$block
#> [1] "data"
#>
#> $a$position
#> [1] "start"
#>
#> $a$pll_args
#> [1] "data real a"
#>
#>
#> $b
#> $b$name
#> [1] "b"
#>
#> $b$sdata
#> [1] 1
#>
#> $b$scode
#> [1] "real b;"
#>
#> $b$block
#> [1] "data"
#>
#> $b$position
#> [1] "start"
#>
#> $b$pll_args
#> [1] "data real b"
#>
#>
#> $dn
#> $dn$name
#> [1] "dn"
#>
#> $dn$sdata
#> [1] 3.4
#>
#> $dn$scode
#> [1] "real dn;"
#>
#> $dn$block
#> [1] "data"
#>
#> $dn$position
#> [1] "start"
#>
#> $dn$pll_args
#> [1] "data real dn"
#>
#>
#> $dn_sigma
#> $dn_sigma$name
#> [1] "dn_sigma"
#>
#> $dn_sigma$sdata
#> [1] 0.5
#>
#> $dn_sigma$scode
#> [1] "real dn_sigma;"
#>
#> $dn_sigma$block
#> [1] "data"
#>
#> $dn_sigma$position
#> [1] "start"
#>
#> $dn_sigma$pll_args
#> [1] "data real dn_sigma"
#>
#>
#> $tp_lb
#> $tp_lb$name
#> [1] "tp_lb"
#>
#> $tp_lb$sdata
#> [1] 2
#>
#> $tp_lb$scode
#> [1] "real tp_lb;"
#>
#> $tp_lb$block
#> [1] "data"
#>
#> $tp_lb$position
#> [1] "start"
#>
#> $tp_lb$pll_args
#> [1] "data real tp_lb"
#>
#>
#> $tp_ub
#> $tp_ub$name
#> [1] "tp_ub"
#>
#> $tp_ub$sdata
#> [1] 10
#>
#> $tp_ub$scode
#> [1] "real tp_ub;"
#>
#> $tp_ub$block
#> [1] "data"
#>
#> $tp_ub$position
#> [1] "start"
#>
#> $tp_ub$pll_args
#> [1] "data real tp_ub"
#>
#>
#> $sigma_lb
#> $sigma_lb$name
#> [1] "sigma_lb"
#>
#> $sigma_lb$sdata
#> [1] 0
#>
#> $sigma_lb$scode
#> [1] "real sigma_lb;"
#>
#> $sigma_lb$block
#> [1] "data"
#>
#> $sigma_lb$position
#> [1] "start"
#>
#> $sigma_lb$pll_args
#> [1] "data real sigma_lb"
#>
#>
#> $sigma_ub
#> $sigma_ub$name
#> [1] "sigma_ub"
#>
#> $sigma_ub$sdata
#> [1] 10
#>
#> $sigma_ub$scode
#> [1] "real sigma_ub;"
#>
#> $sigma_ub$block
#> [1] "data"
#>
#> $sigma_ub$position
#> [1] "start"
#>
#> $sigma_ub$pll_args
#> [1] "data real sigma_ub"
#>
#>
#> attr(,"class")
#> [1] "stanvars"